Building a Midi Transformer

STEP 1

Interface parameters get sent to prepare
the transform algorithm

(\) First...
Paramter value gets sent into

33.3% Transform Algorithm to be used
when Algorithm is excecuted

live.miditool.in s ---swing
Second...

Changed parameter sends a
'bang' message to execute the
Transform Algorithm

¥

b "Transform Algorithm"

STEP 2

Interface parameters trigger the retrieval
of note data from Live

The transform algorithm gets executed by sending a “bang” message into the
live.miditool.in object, which then outputs an array of note data from live.

An array is a collection of elements, each identified by an index. In this case, each element in the
array contains information about a MIDI note inside of the clip. If you were to select 8 notes to
transform, the live.miditool.in object would output an array with 8 elements... 1 for each note.

Element note 1 note2 | note3 | note4 | note5 | note 6 | note 7 | note 8
data data data data data data | data | data
Index 0 1 2 3 4 5 6 7

Each element of the array contains the following information...

note_id: The first note in the clip = 1. The second = 2... This is related to the clip, not the selected notes
pitch: Pitch of the note (0-127)

start_time: Where the note is positioned in the clip. The end of the first 1/4 note = 1. The Second = 2...
duration: The length of the note. So end-time = start_time + duration...

velocity: The velocity of the note (0-127)

mute: If the note is disabled in the editor 1, otherwise 0

probability: The note’s probability parameter value

velocity_deviation: |The note’s velocity deviation parameter value

release_velocity: |The release velocity of the note (0-127)

https://docs.cycling74.com/max8/refpages/live.miditool.in
https://docs.cycling74.com/max8/refpages/live.miditool.in
http://windmakeswaves.com

STEP 3

Retrieved note data gets unpacked and

transformed

To access and modify this information, we use a series of dict.unpack and array
objects. The image below shows the basic blocks required to extract and modify note

data from Live.

Basic Blocks
|

bang

-l_
live.miditool.in

dict.unpack notes:
rray.map

-

dict.unpack start_time:

dict.pack start_time:

dict.pack notes:

I

live.miditool.out

Dealing with Dictionaries

(e N
STEP 1
Extract note array from dictionary
The note data is stored in an array within a data
structure called a dictionary. To access this array,
we use a [dict.unpack] object with the 'notes:'
\argument.)
N

STEP 2
Extract note specific values from each
element in the note array

In this example, we extract and modify the
start_times for each element in the note array. This

\gives us a floating point value that we alter.)

\

(STEP 3
When finished, repack everything

The data needs to be packed back into a dictionary
before being sent out to Live. Notice how the second
outlet of each [dict.unpack] object is connected to
the corresponding inlet of the [dict.pack] object.
This ensures that any data not included in the
specific entries we're editing gets passed through
\unchanged.)

https://docs.cycling74.com/max8/refpages/dict.unpack?q=dict.unpack
http://windmakeswaves.com

The array.map object lets us iterate through and modify elements of an array. The
image below shows what happens when we send an array into an array.map object.

First... Third...

An array gets sent into inlet 1

The modified elements are sent back
and a copy is created

into inlet 2, replacing existing entries

| \J |
LN W /N N
Last... Second...
The modified array gets Each element and its index get sent out of
sent out of outlet 1 outlets 2 and 3 in quick succession to be

modified

EXAMPLE PATCH

Here's the Swing Quantization Algorithm
from our free Midi Transformer, Swing

https://docs.cycling74.com/max8/refpages/array.map?q=array.map
https://docs.cycling74.com/max8/refpages/array.map?q=array.map
http://windmakeswaves.com

‘Transform Note Array] patcher from Swing.amxd

This code segment extracts note 'start times' from arrays of MIDI Note data.

To understand this process, it's helpful to know how these 'start_times' are represented within the arrays.

1 2 3 4 5 6 7 8

1] [[|

bar one bar two

Each notes "start_time" is portrayed as a number relative to the the MIDI Clip inwhich the note resides.

The image below depicts one bar in 4/4 time. Each of the numbers along the top represent quarter note periods of time.

BASIC NOTE LENGTHS

1/4 note =1.0
1/8 note =0.5
1/16 note =0.25

So... if a MIDI note has a start_time of 5, we know that MIDI note starts on the end of the 5th quarter note period

STEP 1

Normalizing Quarter Notes Periods

We treat each quarter note region as ranging from 0 to 1,
regardless of its actual position in the MIDI clip.

. . o —
note array in from live
I

5 r ---quantize
.)
v S a—
prepend set
Iv
e a— k
al .|
-y
)o.
1
scale 0. 1.

STEP 2
Generate a Swung Grid

p "Generate Swung Note Grid"

\

p "Compare start_position
to adjusted grid and find
the closest grid line"

[

STEP 3A
Quantizing MIDI Notes

We compare each MIDI note's starting
position to our adjusted grid, and find the
closest grid line for each note.

y

STEP 4

Denormalizing Quarter Notes Periods

After applying quantization we we add the remainder
back on.

v

STEP 3B
Quantizing MIDI Notes

Then we move the note towards the nearest grid line
based on the Quantize Strength parameter

dict.pack start_time:
o =

transformed note array out

Abstractions on

next page

[Generate Swung Note Grid]

bang generates swung grid m
1 LIm
route 21

v

I
r ---swing
S —

3
A
prepend set

) 0.3333

025050751

T_/

4)
STEP 1
Create a Straight Note Grid

First, we divide a quarter note into either

00.51.) }
sixteenth or eighth notes.

N

0, 0.25, 0.5, 0.75 <- sixteenth notes
0, 0.5, <- eigth notes

tbf

0.0.250.50.75 1

Then, we add a '1" to end of each list so that
notes close to the end of the quarter period
can be quantized to the start of the next period

‘jm alternate every .
| EDCY7 | other grid line... so 0, 0.25, 0.5, 0.75, 1 <- sixteenth notes
I that the downbeats 0,0.5, 1. <- eigth notes
P are unchanged and
e upbeats get swung -
expr $71 + (812 25) TIP
s To observe the contents of an array,
try connecting the outlet of a
[array.tolist] object to a message box!
v TEP 2 \/ all:ray.tolist
1 Swing Every Other Grid Line

output swung grid (array)

[Compare start_position to adjusted grid and find the closest gridline]

swung grid (array)

normalized note start_time (0-1) 2
0051

v b

rray.m

1

array tolist

g
1723
(o]
=5

i—!

zl.nth 1

¢
._i

array.index

i 1

array.tolist

p
STEP 1

~

Create A Distance Array

We compare each element of the array containing
our swung grid to each note's start_time.

Using that information, we calculate the distance
between the note_start position and each
element of the swung grid array, replacing said
(element with the calculated distance value

-

STEP 2
Find the Shortest Distance

Next we determine which index of the array
contains the shortest distance. We use that
information to refer back to the original array
containing the unmodified swung grid, outputting

\the corresponding grid line position

J

nearsest grid line (normalized 0 -1)

Want to learn more?

Dig into Swing... Our free Midi Transformer used in this lesson — windmakeswaves.com/swing

Cycling74 also has a great lesson on Midi tools here...
https://docs.cycling74.com/max8/vignettes/live_miditools?g=arra

)
=

http://windmakeswaves.com/swing
https://docs.cycling74.com/max8/vignettes/live_miditools?q=array
https://www.windmakeswaves.com/
http://windmakeswaves.com

	9039d56671838925c40765ed6e090c45b48d747ac0b0dd8c439733b9969dd575.pdf
	Creating a Max for Live MIDI Transformer LATEST

	Creating a Max for Live MIDI Transformer
	9039d56671838925c40765ed6e090c45b48d747ac0b0dd8c439733b9969dd575.pdf
	f5ce8ea9dffa103865c16a90750058cbe703a14fabb1d3d97447efe3d9d5237c.pdf
	47d14d34a529e208f5c987fd201dbf084b6cc3a889679e9d2f62c6c2c4865877.pdf
	Creating a Max for Live MIDI Transformer LATEST

